细胞迁移

255200当前位置:首页  /   百科  /  

细胞迁移,与细胞移动同义,与细胞运动义近,指的是细胞在接收到迁移信号或感受到某些物质的浓度梯度后而产生的移动。移动过程中,细胞不断重复着向前方伸出突触/伪足,然后牵拉后方胞体的循环过程。细胞骨架和其结合蛋白,还有细胞间质是这个过程的物质基础,另外还有多种物质会对之进行精密调节。

细胞迁移(图1)

细胞迁移过程的四个步骤


若以移动方式与型态来比较,细胞迁移是通过胞体形变进行的定向移动,这有别于其他;如细胞靠鞭毛与纤毛的运动、或是细胞随血流而发生的位置变化,而且就移动速度来看,相比起后两者,细胞迁移要慢得多。举例而言:纤维细胞[注 ]的移动速度为微米每分,若以精子的平均游动速度.微米/每秒,即微米/每分来比较,两者差距约倍以上。角膜细胞即使比纤维细胞快上十倍,但是要完成从不来梅到汉堡这公里的路程仍需要年[注 ]。而且细胞用力甚轻。纤维细胞胞体收缩的力只有×−牛顿,而角膜细胞的则是×−牛顿(一牛顿约为人用手举起一鸡蛋所用的力道)。

但此等“步缓力微”的细胞迁移,却是细胞觅食、伤口痊愈、胚胎发生、免疫反应、感染和癌症转移等等生理现象所涉及到的。因此细胞迁移是目前细胞生物学研究的一个主要课题,科学家们试图通过对细胞迁移的研究,在阻止癌症转移、异体植皮等医学应用方面取得更大成果。也因为细胞迁移独有的运动特性,成为今生物学热门研究方向。

细胞迁移的研究史

年,显微技术的先驱人物安东尼·凡·列文虎克往英国皇家学会寄出一封信,里面描写了细菌的运动。这封信可以说是打开了科学家对细胞迁移研究的第一页。在往后这多年时间,人们就一直试图去理解细胞迁移过程的细节。

细胞迁移的关键物质—细胞骨架则要等到世纪才被发现。虽然年科学家阿尔伯特·山特吉尔吉就已发现细胞骨架的成分—肌动蛋白和肌球蛋白,但是因为电子显微镜制作样本时需要对样品进行到 °C的低温固定,在这样的温度下细胞骨架会被破坏,即所谓的“解聚”。所以当时认为细胞质不过是一“蛋白汤”,各种细胞器悬浮于细胞质液(Cytosol)中。但在年代后,人们使用戊二醛常温固定的方法开始逐渐发现细胞骨架。科学家发现,细胞骨架在细胞迁移的过程中起到承载和支撑的作用。在世纪末世纪初,科学家对细胞迁移复杂机理的认识有了非常大的进步,对细胞与基质的粘着,非对称性极化和胞内分层运动都有了进一步的了解。但是整个过程其实仍未被了解透彻,很多中间过程就是连起作用的物质都未明。科学家对其中部分需要进行假设,再进一步通过实验去证实。

研究技术

为了研究某一蛋白质在细胞迁移中所扮演的角色,一般来说科学家可以将某蛋白的编码基因进行突变,甚至应用新近的RNAi现象,或者加入该蛋白质的阻断剂(inhibitor)来抑制某一个蛋白质的表现,并分析此抑制对于细胞迁移的影响,反而得知被抑制的蛋白质与细胞迁移的作用。

新科技对细胞迁移研究起到了极大的推动作用。科学家通过ECIS技术(Electric Cell-substrate Impedance Sensing;电子细胞基质阻抗判断)可以观察到细胞在传统细胞培养甚至是液体环境中的移动行为。根据ECIS技术观测细胞电学参数的能力,ECIS技术还可以量化测量肿瘤细胞迁移过程中细胞层形态变化。同样是在肿瘤研究领域,ATIM(Fluorescence- Assisted Transmigration Invasion and Motility Assay,荧光协助转移侵入和运动分析法) 提供了快速定量细胞侵入(细胞从一个区域进入另一区域)的更好方法,允许检测大量样品和不同条件下时间依赖性侵入。更重要的是,这一系统可以方便地通过在多孔膜上增加胞外基质的厚度来监测细胞侵入结构的深度。韩国延世大学的朴宗哲和朴峰珠则发展出一套细胞跟踪系统。它是由计算机辅助的时间流逝显示微观复制系统,其中有影象形成过程软件,其程序编制含有自动影象分析和自设计CO微小细胞培育器,它的功能是在一个倒置显微镜平台上,对于细胞迁移进行迅速而精确的分析,从而形成对于细胞的培育。目前已知他们运用这一计算机辅助系统计算了外细胞间质(ECMs)覆盖表面的细胞迁移过程。

斑马鱼是目前在该领域最常用于研究的生物。细胞迁移是脊椎动物胚胎发育的核心过程之一。细胞从原分裂生成的部位移动到目的部位就是细胞的迁移。斑马鱼有着很大的优势,首先是其胚胎能在母体外发育,速度快,受精小时后身体的器官已大部分就位。而且斑马鱼繁殖量大,容易对之进行变异。还有其胚胎透明,在高分辨率快进摄影技术的帮助下,人们可以很好的观察到细胞迁移的过程,还可以利用绿色荧光蛋白(GFP)可以观察到细胞在斑马鱼体内的分布情况。

参与细胞迁移的分子

细胞迁移需要内外因素的配合。外部的因素指的是细胞外的信号分子。内部因素则指细胞的信号传导系统和执行运动的细胞骨架和分子马达,还有参与粘着斑形成的各种分子(关于参与形成粘着斑的各种分子请见突出与底质的粘着)。细胞外信号结合胞膜受体完成其使命后,需要细胞内信号分子接力,将运动信息进一步传给细胞迁移的执行单位——细胞骨架和分子马达。种类繁多的细胞内信号分子会相互作用,影响后述这两种分子的分布,结构和活性,达到精细调整细胞运动的目的。

细胞迁移有关的生理过程

细胞迁移是多种生理过程的前提,例如创伤恢复,神经嵴细胞的移行,急性炎症中白细胞的渗出还有癌细胞的转移。

胚胎发生

高等动植物成体的结构非常复杂,但都是来自于一个受精卵。受精卵不断分裂,所得出的细胞会移动,还会通过基因的开启或关闭进入分化途径,形成特异的细胞,执行其被指定的功能。胚胎发生(Embryogenesis)通常被分为三个阶段。第一阶段是原肠胚形成,指受精卵分裂到囊胚后,经过囊胚的折叠逐渐成为有三层胚层结构的原肠胚的整个过程,此过程后身体各部分的构造方向已基本定下。第二阶段是器官形成(Organogenesis)。最后阶段则是各器官继续成熟完善至成体状态。

动物的胚胎发生涉及大量的细胞迁移行为。科学家在研究这些细胞迁移时,可以使用无毒性的染料,或者是可以遗传的遗传学标签(heritable genetic label)对那些将要迁移的细胞进行标示,以追踪其动向。例如,科学家可以从鹌鹑胚胎内取出其将来要成为翅膀的体节(Somite),将该体节移植入培养了两天的小鸡胚胎中。经过一周后,将小鸡翅膀部分剖开并观察其肌肉,可见它们是来自鹌鹑体节的。

   观察无脊椎动物如海胆(sea urchin)的原肠胚形成过程(Gastrulation),即从囊胚(Blastula)到原肠胚(Gastrula)的形成过程。开始时囊胚是由约1000个细胞组成的,球状中空结构,球腔即为囊胚腔(blastocoele),球壁由单层细胞组成,植物极(Vegetal pole,可以看作是日后海胆身体的尾部)上皮比较厚,出现细胞内馅的倾向。然后一些间充质细胞开始游离植物极上皮,并在囊胚腔内爬行。而植物极上皮也开始向内折叠,上皮外围的细胞会向囊胚腔伸出丝状伪足,帮助上皮向动物极(可以看作为海胆日后的头部)移动并最终与囊胚腔另一端接合。上皮内陷折叠时,留下的空隙会成为日后的肠道,上皮与囊胚壁接触之处则是日后海胆的口部。

脊椎动物的神经嵴细胞,在胚胎期会不断从背侧向腹侧移行。其中一部分移行于外胚层下方,将来会分化为色素细胞,而那些行走的稍深一点的细胞,会形成后来交感神经的神经节细胞,肾上腺髓质。而颈部和骶部的神经嵴细胞则会沿着身体纵轴移到肠壁。就是说,日后的组织肠神经丛,神经节神经元,肾上腺的嗜铬细胞(chromaffin)都是由神经嵴细胞迁移分化得出的。

值得注意的是,在此过程中,沿途的不迁移细胞可能会影响迁移细胞的行为,改变它们的去向,甚至决定迁移细胞是否能存活。同来自神经嵴的性细胞,血细胞前体和色素细胞都受到一种Kit—Steel因子机制的调节。Kit是一种跨膜受体,其配体是Steel因子。沿途的细胞或者是终点处的细胞会表达Steel因子,激活迁移经过的细胞上的Kit受体。而Kit受体的激活是这些细胞存活和增殖的前提。在一个个体中,两者之中的任一者出现突变,患者的体色,血细胞供应和性细胞的形成都会出现异常,例如患者额头可见一白斑。

损伤修复

损伤会对机体造成身体部分细胞和组织的丧失,机体需要对损伤进行修复(repair)。修复有两种不同的形式,再生和纤维性修复。这两个过程都涉及细胞迁移。例如上皮组织中的一种——鳞状上皮如果出现缺损,其边缘和底部的细胞就会分裂增生,并向缺损中心迁移。虽然很多种类的细胞都具有分裂再生的能力,如上皮细胞,但是它们最终能否成功修复受损组织却要依赖于细胞外基质。例如细胞外基质的一种成分—透明质酸(hyaluronan),存在于迁移细胞的周围,它能够抑制细胞间的粘附,促进细胞迁移

如果损伤伴有炎症的发生,实质细胞即使具有再生能力,也很难独自完成修复工作。这时就要靠肉芽组织(granulation tissue)进行修复了。肉芽组织会首先增生,并溶解吸收坏死组织和异物,填补空缺,再最终转化为瘢痕组织完成修复。肉芽组织由新生的毛细血管和纤维细胞组成。血管内皮细胞会先迁移到受损部位新生形成血管。接着血小板,炎细胞以及活化了的血管内皮细胞会释放生长因子,如TGF-β,DGF,表皮生长因子,FGF和促纤维化性细胞因子如IL-1和TNF-α等分子,这些因子能吸引单核巨噬细胞纤维细胞的增殖和迁移。前者会在受损部位清理细胞外碎片,纤维蛋白和其他外源物质。而纤维细胞则会合成细胞外基质并不断积聚。最后经过肉芽组织的结构调整,最终形成瘢痕。

细菌感染

致病源微生物对宿主细胞的入侵同样会造成微丝的动态改变。很多致病细菌经过演化,甚至是和宿主共同演化(coevolution),发展出一套生存策略,利用宿主细胞动力蛋白的多聚化,为自身的入侵,繁殖或扩布创造条件。而通过研究这些细菌对细胞骨架的作用途径,科学家可以对细胞迁移的调控作更深入的了解。

1994年研究人员发现,分布在细胞外或是存在吞噬泡(Phagosome)内的格兰氏阴性细菌,如志贺氏菌(Shigella)和沙门菌(Salmonella),演化出一套III型分泌系统(Type III Secretion System,简称TTSS),可以将细菌蛋白质注射入真核细胞细胞质内,模拟细胞内的细胞因子,控制肠上皮细胞或肠内皮细胞细胞骨架的重整理(Rearrangement),赋予这些不具备内吞能力的细胞以胞吞能力,以便自己进入细胞内,这种机制被称为触发器机制(Trigger)。具体地说,沙门菌会分泌蛋白质SipC。SipC的N端会与肌动蛋白结合,C端具有促进肌动蛋白核化的功能。而志贺氏菌有着与SipC同源的蛋白质IpaC,则会激活Cdc42和Rac。这样,肌动蛋白会在细菌与细胞结合处多聚化,为细菌的进入创造条件。同时,志贺氏菌还会分泌IpaA,这种蛋白会结合细胞内的粘着斑蛋白(Vinculin,或译钮带蛋白),并将后者带到细菌与细胞接触之处,形成粘着斑样结构,被称为入侵焦点(Entry Focus)。这种IpaA-粘着斑蛋白能使所在之处的微丝解聚,使得志贺氏菌更容易进入细胞。

另外还有拉链机制(Zipper)。细胞膜表面具有一系列受体,它们是为胞胞连合和胞底质联合所需的。一些细菌,如单核细胞增生李斯特氏菌(Listeria monocytogenes)和鼠疫杆菌(Yersinia)会在自己表面表达出这些受体的配体,这样可以诱使细胞伸出伪足包绕自身,并最终被吞入胞内。李斯特氏菌会表达一种名叫内化素A(Internalin A)的蛋白,它会结合胞胞连合蛋白质E钙粘蛋白(E cadherin)。而耶尔森氏菌则会使用侵染素(Invasin)结合β-整合蛋白(β-Integrin)。目前人们认为,这两种途径会最终让肌动蛋白-肌球蛋白组合产生拉力,将细菌拉入胞内。

白细胞渗出

炎症反应最重要的功能是将白细胞送到炎症灶,所以白细胞的渗出是炎症反应最重要的特征。其过程如下:炎症部位的血管内皮细胞会在组胺,白三烯等物质作用下,加上骨架重构,穿胞作用的增强和损伤而收缩,随之而来的是血管通透性的增加,这进一步造成血流速度的减慢甚至是停滞。到达该处的白细胞因此会离开血管的中心部,边集于血管壁,不断滚动直至最后在胞膜表面选择素(Selectin)的作用下与内皮细胞黏附。然后,白细胞会在内皮细胞连接处伸出伪足,以阿米巴运动的方式穿过间隙到达炎症灶,需时2到12分钟。而游出的细胞也有分先后,早期先是中性粒细胞游出,48小时之后再轮到单核细胞。游出的白细胞然后会在炎症灶附近搜索细菌产物,补体成分,细胞因子和白三烯。这些物质能吸引甚至激活白细胞,将白细胞带到炎症部位并发挥其吞噬,免疫和组织损伤作用。中性粒细胞巨噬细胞能吞噬病原体或组织碎片,而巨噬细胞还会执行其抗原呈递功能,激活B,T淋巴细胞,以杀伤病原体。

癌症转移

目前人们对恶性肿瘤的研究是多方面的,从癌症的产生到转移,血管供给以及分裂增殖都一直是医学和生物学研究的热点。癌症细胞增殖失控,短时间内可以繁殖出大量后代,这样首先会造成生长空间的局促和养分,如氧气的紧张。这样恶性肿瘤内会形成一片坏死区,正如上面在组织损伤里面提到的,机体会尝试“修复”这些损伤。坏死组织会释放出一系列促血管生成因子,如血管内皮生长因子(vascular endothelial growth factor),还会招来巨噬细胞巨噬细胞也会释放大量促血管生成细胞因子和生长因子。过程中有一类名叫高机动性组蛋白(high-mobility group proteins,简称HMGB)可能起到协调作用。最近研究表明其中的一种:HMGB1能强烈诱导血管内皮迁移。 新生血管既解决了癌组织的供给问题,也为癌细胞的远端转移提供了管道。癌细胞借血道转移到远端器官,并在那里增殖。转移是恶性肿瘤的确凿证据,同时也是癌症患者的主要死亡原因。

癌细胞既能直接蔓延,如晚期子宫颈癌可直接蔓延至直肠和膀胱;它们又可以对周遭组织进行浸润,结果是形成边界不分明的癌组织,或是进入血管转移到远端(见远端转移)。两者的机制比较复杂,目前还有未明的问题尚待解决。目前根据观察可将癌症浸润分为四步。首先癌细胞表面的粘附分子会减少,与周围的细胞彼此分离,被“解除束缚”。同时癌细胞与基底膜的粘附却会增加,这是癌细胞通过增加自身基底面层粘连蛋白(laminin)受体实现的。然后癌细胞会释放蛋白酶,用以降解细胞外基质成分,如IV型胶原酶,使基底膜受损,产生缝隙。最后是癌细胞阿米巴运动样的迁移,钻过基底膜的缝隙,到达底下的间质组织。癌细胞此后会继续用蛋白酶为自己在间质组织开路,直到血管,然后它会以同样方式进入血管,经血到转移后,又以同样方式出管。

癌症转移过程中涉及的信号传递途径,竟然有很多是胚胎发育过程中所必需的。科学家在研究中发现越来越多重要的分子,如N-钙粘蛋白(N-Cadherin),核因子κB(NF-κB),骨连接素(Osteonectin),血栓素A2(Thromboxane A2)和Ras,都是促成癌细胞迁移的因子。

以ras基因(鼠肌小节,Rat sarcoma)这个原癌基因为例,其翻译产物是一21达尔顿重的G蛋白Ras。Ras可分为四种经典Ras蛋白:H (Harvey)-Ras,N(Neuroblastoma,成神经细胞瘤)-Ras,和一对选择性剪接产物K(Kirsten)-Ras4A和4B。从插图2可见,Ras在信号传导通路中位于中心位置,它的变异所造成的严重后果可想而知。人类30%的癌症中被查证有变异的ras基因,它们的产物一方面能抑制细胞凋亡,还会加快癌细胞转移。H-Ras变异蛋白可见于膀胱癌和肾癌。而在几乎所有的乳腺癌中都可看到变异的K-Ras。另外在肺癌,大肠癌和直肠癌中都可见其身影。K-Ras的作用很可能是通过Ras-Raf-MEK-ERK途径实现的。这条途径不但能促进血管生成,还会诱发癌细胞的浸润和转移。

溶鞘磷脂,(Lysosphingomyelin,或称鞘氨醇磷酰胆碱,英文Sphingosylphosphorylcholin),简称SPC,目前被怀疑是癌症转移的启动子。溶鞘磷脂是一种具有生物活性的胞内外信号传导物质,能诱导细胞移行。它先是在患有A型尼曼匹克症(Niemann Pick type A)病人脑部被发现。它的受体是胞膜上的卵巢癌G蛋白偶联受体1(Ovarian cancer G-Protein coupled receptor 1)。研究发现,患有卵巢癌的病人,其腹水中SPC水平明显高于患良性卵巢肿瘤的患者。

在显微镜下通过观察胰腺癌细胞在存在和不存在SPC情况下的活动和胞内角蛋白(Keratin)的分布,可以大概了解SPC在癌症转移中的作用。角蛋白属于中间纤维,它的作用是维护细胞的稳定,赋予胞体一定的硬性。在未经SPC处理的胰腺癌细胞中,角蛋白均匀分布在细胞质中。若它受到SPC的处理,可以观察到其角蛋白会被集中分布到细胞核周围,而细胞膜下角蛋白的浓度则会下降。角蛋白这样的重新分布无疑使得癌细胞外围变得更有柔韧性,让它们更容易通过它们在基底膜打开的狭窄孔洞。

而在1996年被发现的RhoE则饰演着抑制癌症的角色。与其他游移于激活/失活状态的G蛋白不同,RhoE持续与GTP结合,一直处于激活状态,所以其功能的上下调节靠的是其表达水平。在2007年一份研究报告中指出,RhoE在肺癌患者中表达异常,而且还与患者吸烟史有关。根据另一项研究,RhoE不仅在细胞增殖方面起到调节作用,则在细胞迁移方面发挥着其功能,甚至将某些癌细胞引向细胞凋亡。路德维希癌症研究所(Ludwig Institute for Cancer Research)的研究人员发现,RhoE会在生长因子的刺激和DNA损坏的情况下表达增高,因此有可能成为癌症的生物标记。RhoE能阻止肌动蛋白的聚合和应力纤维的形成,因此细胞迁移的能力会减弱。RhoE成为癌症治疗的又一新目标。

评论

登录后才可以留言!
相关文章